104 STREAMS 351

cannot go to sleep, because they would be putting an arbitrary process to sleep (the

one that was interrupted). Modules must save their state information internally,

making their code more cumbersome than it would be if sleeping were allowed.
Several anomalies exist in the implementation of streams.

o Process accounting is difficult undér streams, because modules do not necessarily
run in the context of the process that is using the stream. It is false to assume
that all processes uniformly share execution of streams modules, because some
processes may require use of complicated network protocols, whereas others may
use simple terminal line disciplines.

e Users can put a terminal driver into raw mode, such that read calls return after
a short time if no data is available (for example, if newtty.c_cc[VMIN] = 0; in
Figure 10.17). It is difficult to implement this feature with streams, unless
special-case code is introduced at the stream-head level.

e Streams are linear connections and do not easily allow multiplexing in the
kernel. For example, the window example in the previous section does the
multiplexing in a user-level process.

In spite of these anomalies, streams holds great promise for improving the design of
driver modules.

10.5 SUMMARY

This chapter presented an overview of device drivers on the UNIX system. Devices
are either block devices or character devices; the interface between them and the
rest of the kernel depends on the device type. The block device interface is the
block device switch table, which consists of entry points for device open, close, and
strategy procedures. The strategy procedure controls data transfer to and from the
block device. The character device interface is the character device switch table,
which consists of entry points for device open, close, read, write, and ioctl
procedures. The ioctl system call uses the ioct! interface to character devices,
which permits control information to be sent between processes and devices. The
kernel calls device interrupt handlers on receipt of a device interrupt, based on
information stored in the interrupt vector table and on parameters supplied by the
interrupting hardware. '

Disk drivers convert logical block numbers used by the file system to locations
on the physical disk. The block interface allows the kernel to buffer data. The raw
interface allows faster I/O to and from the disk but bypasses the buffer cache,
allowing more chances for file system corruption.

Terminal drivers support the primary interface to users. The kernel associates
three clists with each terminal, one for raw input from the keyboard, one for
processed input to account for erase and kill characters and carriage returns, and
one for output. The ioctl system call allows processes to control how the kernel
treats input data, placing the terminal in canonical mode or setting various
parameters for raw mode. The getty process opens terminal lines and waits for a

352 THE 1/0 SUBSYSTEM

connection: It sets its process group so that the login shell is eventually a process
group leader, initializes terminal parameters via ioct/, and prompts the user
through a login sequence. The control terminal thus set up sends signals to
processes in the process group, in response to events such as when the user hangs
up or presses the break key.

Streams are a scheme for improving the modularity of device drivers and
protocols. A stream is a full-duplex connection between processes and device
drivers, which may contain line disciplines and protocols to process data en route.
Streams modules are characterized by well-defined interfaces and by their
flexibility for use in combination with other modules. The flexibility they offer has
strong benefits for network protocols and drivers.

10.6 EXERCISES

* 1. Suppose a system contains two device files that have the same major and minor
number and are both character devices. If two processes wish to open the physica’
device simultaneously, show that it makes no difference whether they open the same
device file or different device files. What happens when they close the device?

* 2. Recall from Chapter S that the mknod system cail requires superuser permission tc
create a device special file. Given that device access is governed by the permission
modes of a file, why must mknod require superuser permission?

3. Write a program that verifies that the file systems on a disk do not overlap. The
program should take two arguments: a device file that represents a disk volume and ¢
descriptor file that gives section numbers and section lengths for the disk type. The
program should read the super blocks to make sure that file systems do not overlap.
Will such a program always be correct?

4. The program mkfs initializes’ a file system on a disk by creating the super block,
leaving space for the inode list, putting all the data blocks on a linked list, and making
the root inode directory. How would you program mkfs? How does the program
‘change if there is a volume table of contents? How should it initialize the volume
table of contents? -

5. The programs mkfs and fsck (Chapter 5) are user-level programs instead of part of
the kernel. Comment.

6. Suppose a programmer wants to write a data base system to run on the UNIX system.
The data base programs run at user level, not as part of the kernel. How should the
system interact with the disk? Consider the following issues:

Use of the regular file system interface versus the raw disk,

o Need for speed,

o Need to know when data actually resides on disk,
o Size of the data base: Does it fit into one file system, an entire disk volume, or
several disk volumes?

7. The UNIX kernel tacitly assumes that the file system is contained on perfect disks.
However, disks could contain faults that incapacitate certain sectors although the
remainder of the disk is still "good." How could a disk driver (or intelligent disk
controller) make allowances for small numbers of bad sectors. How would this affect
performance?

10.6

10.

11.

12.

13.

14.

15.

* 16.

17.

* 18.

19.

20.

21.

EXERCISES 353

When mounting a file system, the kernel invokes the driver open procedure but later
releases the inode for the device special file at the end of the mount call. When
umounting a file system, the kernel accesses the inode of the device special file, invokes
the driver close procedure, and releases the inode. Compare the sequence of inode
operations and driver open and close calls to the sequence when opening and closing a
block device. Comment.

Run the program in Figure 10.14 but direct the output to a file. Compare the
contents of the file to the output when output goes to the terminal. You will have to
interrupt the processes to stop them; let them run long enough to get a sufficient
amount of output. What happens if the write call in the program is replaced with

printf(output);
What !..ppens when a user attempts to do text editing in the background:
ed file &

Why?
Terminal files typically have access permissions set as in

crw——w——w— 2 mjb lus 33, 11 Oct 25 20:27 tty61

when a user is logged on. That is, read/write permission is permitted for user "mjb,"
but only write permission is allowed other users. Why?

Assuming you know the terminal device file name of a friend, write a program that
allows you to write messages to your friend’s terminal. What other mformatlon do you
need to encode a reasonable facsimile of the usual write command?

Implement the stty command: with no parameters, it retrieves the values of terminal
settings and reports them to the user. Otherwise, the user can set various settings
interactively.

Encode a line discipline that writes the machine name at the beginning of each line of
output.

In canonical mode, a user can temporarily stop output to a terminal by typing "control
s" at the terminal and resume output by typing "control q." How should the standard
line discipline implement this feature?

The init process spawns a getty process for each terminal line in the system. What
would happen if two getty processes were to exist simultaneously for one terminal,
waiting for a user to log in? Can the kernel prevent this?

Suppose the shell were coded so that it "ignored” the end of file and continued to read
its standard input. What would happen when a user (in the login shell) hits end of .ﬁle
and continues typing?

Suppose a process reads its control terminal but ignores or catches hangup signals.
What happens when the process continues to read the control terminal after a hangup?
The getty program is responsible for opening a terminal line, and login is responsible
for checking login and password information. What advantages are there for doing the
two functions in separate programs?

Consider the two methods for implementing the indirect terminal driver (“/dev/tty™),
described in Section 10.3.6. What differences would a user perceive? (Hint: Think
about the system calls star and fstat.)

Design a method for scheduling streams modules, where the kernel contains a special
process that executes module service procedures when they are scheduled to execute.

354

THE 1/0 SUBSYSTEM

* 22. Design a scheme for virtual terminals (windows) using conventional (nonstreams)

* 23.

24.

drivers.

Design a method for implementing virtual terminals using streams such that a kernel
module, rather than a user process, multiplexes I/O between the virtual and physical
terminals. Describe a mechanism for connecting the streams to allow fan-in and fan-
out. Is it better to put a multiplexing module inside the kernel or construct it as a
user process?

The command ps reports interesting information on process activity in a running
system. In traditional implementations, ps reads the information in the process table
directly from kernel memory. Such a method is unstable in a development
environment where the size of process table entries changes and ps cannot easily find
the correct fields in the process table. Encode a driver that is impervious to a
changing environment.

11

INTERPROCESS
COMMUNICATION

Interprocess communication mechanisms allow arbitrary processes to exchange data
and synchronize execution. We have already considered several forms of
interprocess communication, such as pipes, named pipes, and signals. Pipes
(unnamed) suffer from the drawback that they are known only to processes which
are descendants of the process that invoked the pipe system call: Unrelated
processes cannot communicate via pipes. Although named pipes allow unrelated
processes to communicate, they cannot generally be used across a network (see
Chapter 13), nor do they readily lend themselves to setting up multiple
communications paths for different sets of communicating processes: it is
impossible to multiplex a named pipe to provide private channels for pairs of
communicating processes. Arbitrary processes can also communicate by sending
signals via the kill system call, but the “message” consists only of the signal
number. ’

This chapter describes other forms of interprocess communication. It starts off
by examining process tracing, whereby one process traces and controls the
execution of another process and then explains the the System V IPC package:
messages, shared memory, and semaphores. It reviews the traditional methods by
which processes communicate with processes on other machines over a network and,
finally, gives a user-level overview of BSD sockets. It does not discuss network-
specific issues such as protocols, addressing, and name service, which are beyond
the scope of this book.

356 INTERPROCESS COMMUNICATION

11.1 PROCESS TRACING

The UNIX system provides a primitive form of interprocess communication for
tracing processes, useful for debugging. A debugger process, such as sdb, spawns a
process to be traced and controls its execution with the ptrace system call, setting
and clearing break points, and reading and writing data in its virtual address space.
Process tracing thus consists of synchronization of the debugger process and the
traced process and controlling the execution of the traced process.

if ((pid = fork()) == 0)
{
/* child — traced process */
ptrace(0, 0, 0, 0);
exec(*“name of traced process here”);
}
/* debugger process continues here */
for (;;)
{
wait((int *) 0);
read (input for tracing instructions)
ptrace(cnd, pid, ..);
if (quitting trace)
break;

}

Figure 11.1. Structure of Debugging Process

The pseudo-code in Figure 11.1 shows the typical structure of a debugger
program. The debugger spawns a child process, which invokes the ptrace system
call and, as a result, the kernel sets a trace bit in the child process table entry. The
child now execs the program being traced. For example, if a user is debugging the
program a.out, the child would exec a.out. The kernel executes the exec call as
usual, but at the end notes that the trace bit is set and sends the child a “trap”
signal. The kernel checks for signals when returning from the exec system call, just
as it checks for signals after any system call, finds the “trap” signal it had just sent
itself, and executes code for process tracing as a special case for handling signals.
Noting that the trace bit is set in its process table entry, the child awakens the
parent from its sleep in the wait system call (as will be seen), enters a special trace
state similar to the sleep state (not shown in the process state diagram in Figure
6.1), and does a context switch. '

Typically, the parent (debugger) process would have meanwhile entered a user-
level loop, waiting to be awakened by the traced process. When the traced process
awakens the debugger, the debugger returns from wait, reads user input
commands, and converts them to a series of ptrace calls to control the child
(traced) process. The syntax of the ptrace system call is

11.1 PROCESS TRACING 357

ptrace(cmd, pid, addr, data);

where cmd specifies various commands such as reading data, writing data, resuming
execution and so on, pid is the process ID of the traced process, addr is the virtual
address to be read or written in the child process, and data is an integer value to be
written. When executing the ptrace system call, the kernel verifies that the
debugger has a child whose ID is pid and that the child is in the traced state and
then uses a global trace data structure to transfer data between the two processes.
It locks the trace data structure to prevent other tracing processes from overwriting
it, copies cmd, addr, and data into the data structure, wakes up the child process
and puts it into the *ready-to-run” state, then sleeps until the child responds.
When the child resumes execution (in kernel mode), it does the appropriate trace
command, writes its reply into the trace data structure, then awakens the debugger.
Depending on the command type, the child may reenter the trace state and wait for
a new command or return from handling signals and resume execution. When the
debugger resumes execution, the kernel saves the “return value” supplied by the
traced process, unlocks the trace data structure, and returns to the user.

If the debugger process is not sleeping in the wait system call when the child
enters the trace state, it will not discover its traced child until it calls waiz, at
which time it returns immediately and proceeds as just described.

int data{32];
main()
{
int i;
for G=0; i <32; i++)
printf(*datal%d] = %d\n", i, datali]);
printf("ptrace data addr 0x%x\n", data);

h

Figure 11.2. Trace — A Traced Process

.Consider the two programs in Figures 11.2 and 11.3, called trace and debug,
respedtively. Running trace at the terminal, the array values for data will be 0; the
process prints the address of data and exits. Now, running debug with a
parameter equal to the value printed out by trace, debug saves the parameter in
addr, creates a child process that invokes ptrace to make itself eligibie for tracing,
and execs grace. The kernel sends the child process (call it trace) a SIGTRAP
signat at the end of exec, and trace enters the trace state, waiting for a command
from debug. If debug had been sleeping in wait, it wakes up, finds the traced child
process, and returns from wait. Debug then calls ptrace, writes the value of the
loop variable i into the data space of trace at address addr, and increments addr;
in trace, addr is an address of an entry in the array data. Debug’s last call to
ptrace .causes trace to run, and this time, the array data contains the values 0 to

358 INTERPROCESS COMMUNICATION

#define TR_SETUP 0
#define TR_WRITE 5
#define TR_RESUME 7
int addr;

main(argc, argv)
int argg;
char *argv(];

int i, pid;

sscanf(argvl1], "%x", &addr);
if ((pid = fork()) == 0)

(

ptrace(TR_SETUP, 0, 0, 0);
ex~cl ("trace”, "trace", 0);
exit();
}
for i=0; i<32 i++)
{
wait((int *) 0);
/* write value of i into address addr in proc pid */
if (ptrace(TR_WRITE, pid, addr, i) == —1)
exitQ;
addr += sizeof (int);
}
/* traced process should resume execution */
ptrace(TR_RESUME, pid, 1, 0);

Figure 11.3. Debug — A Tracing Process

31. A debugger such as sdb has access to the traced process’s symbol table, from
which it determines the addresses it uses as parameters to ptrace calls.
The use of ptrace for process tracing is primitive and suffers several drawbacks.

o The kernel must do four context switches to transfer a word of data between a
debugger and a traced process: The kernel switches context in the debugger in
the ptrace call until the traced process replies to a query, switches context to
and from the traced process, and switches context back to the debugger process
with the answer to the ptrace call. The overhead is necessary, because a
debugger has no other way to gain access to the virtual address space of a
traced process, but process tracing is consequently slow.

11.1 PROCESS TRACING = 359

® A debugger process can trace several child processes simultaneously, although
this feature is rarely used in practice. More critically, a debugger can only
trace child processes: If a traced child forks, the debugger has no control over
the grandchild, a severe handicap when debugging sophisticated programs. If a
traced process execs, the later execed images are still being traced because of
the original ptrace, but the debugger may not know the name of the execed
image, making symbolic debugging difficult.

® A debugger cannot trace a process that is already executing if the debugged
process had not called ptrace to let the kernel know that it consents to be
traced. This is inconvenient, because a process that needs debugging must be
killed and restarted in trace mode.

e It is impossible to trace setuid programs, because users could violate security by
writing their address space via ptrace and doing illegal operations. For
example, suppose a setuid program calls exec with file name “privatefile”. A
clever user could use ptrace to overwrite the file name with “/bin/sh”, executing
the shell (and all programs executed by the shell) with unauthorized permission.
Exec ignores the setuid bit if the process is traced to prevent a user from
overwriting the address space of a setuid program.

Killian [Killian 84] describes a different scheme for process tracing, based on
the file system switch described in Chapter 5. An administrator mounts a file
system, “/proc”; users identify processes by their PID and treat them as files in
“/proc”. The kernel gives permission to open the files according to the process user
ID and group ID. Users can examine the process address space by reading the file,
and they can set breakpoints by writing the file. Star returns various statistics
about the process. This method removes three disadvantages of ptrace. First, it is
faster, because a debugger process can transfer more data per system call than it
can with ptrace. Second, a debugger can trace arbitrary processes, not necessarily
a child process. Finally, the traced process does not have to make prior
arrangement to allow tracing; a debugger can trace existing processes. As part of
the regular file protection mechanism, only a superuser can debug processes that
are setuid to root.

11.2 SYSTEM V IPC

The UNIX System V IPC package consists of three mechanisms. Messages allow
processes to send formatted data streams to arbitrary processes, shared memory
allows processes to share parts of their virtual address space, and semaphores allow
processes to synchronize execution. Implemented as a unit, they share common
properties.

¢ Each mechanism contains a table whose entries describe all instances of the
mechanism.
¢ Each entry contains a numeric key, which is its user-chosen name.

360

INTERPROCESS COMMUNICATION

Each mechanism contains a ‘“‘get” system call to create a new entry or to
retrieve an existing one, and the parameters to the calls include a key and flags.
The kernel searches the proper table for an entry named by the key. Processes
can call the “get” system calls with the key IPC_PRIVATE to assure the return
of an unused entry. They can set the IPC_CREAT bit in the flag field to create
a new entry if one by the given key does not already exist, and they can force
an error notification by setting the JPC_EXCL and IPC_CREAT flags, if an
entry already exists for the key. The “get” system calls return a kernel-chosen
descriptor for use in the other system calls and are thus analogous to the file
system creat and open calls.

For each IPC mechanism, the kernel uses the following formula to find the
index into the table of data structures from the descriptor:

index = descriptor modulo (number of entries in table)

For example, if the table of message structures contains 100 entries, the
descriptors for entry 1 are 1, 101, 201, and so on. When a process removes an
entry, the kernel increments the descriptor associated with it by the number of
entries in the table: The incremented value becomes the new descriptor for the
entry when it is next allocated by a *“get” call. Processes that attempt to access
the entry by its old descriptor fail on their access. Referring to the previous
example, if the descriptor associated with message entry 1 is 201 when it is
removed, the kernel assigns a new descriptor, 301, to the entry. Processes that
attempt to access descriptor 201 receive an error, because it is no longer valid.
The kernel eventually recycles descriptor numbers, presumably after a long time
lapse.

Each IPC entry has a permissions structure that includes the user ID and group
ID of the process that created the entry, a user and group ID set by the
“control” system call (below), and a set of read-write-execute permissions for
user, group, and others, similar to the file permission modes.

Each entry contains other status information, such as the process ID of the last
process to update the entry (send a message, receive a message, attach shared
memory, and so on), and the time of last access or update.

Each mechanism contains a “control” system call to query status of an entry, to
set status information, or to remove the entry from the system. When a process
queries the status of an entry, the kernel verifies that the process has read
permission and then copies data from the table entry to the user address.
Similarly, to set parameters on an entry, the kernel verifies that the user ID of
the process matches the user ID or the creator user ID of the entry or that the
process is run by a superuser; write permission is not sufficient to set
parameters. The kernel copies the user data into the table entry, setting the
user 1D, group ID, permission modes, and other fields dependent on the type of
mechanism. The kernel does not change the creator user and group ID fields,
so the user who created an entry retains control rights to it. Finally, a user can
remove an entry if it is the superuser or if its process ID matches either ID field

11.2 SYSTEM V IPC 361

in the entry structure. The kernel increments the descriptor number so that the
next instance of assigning the entry will return a different descriptor. Hence,
system calls will fail if a process attempts to access an entry by an old
descriptor. as explained earlier.

11.2.1 Messages

There are four system calls for messages: msgget returns (and possibly creates) a
message descriptor that designates a message queue for use in other system calls,
msgctl has options to set and return parameters associated with a message
descriptor and an option to remove descriptors, msgsnd sends a message, and
msgrcy receives a message.

The syntax of the msgget system call is

msgqid = msgget (key, flag);

where msgqid is the descriptor returned by the call, and key and flag have the
semantics described above for the general “get” calls. The kernel stores messages
on a linked list (queue) per descriptor, and it uses msgqgid as an index into an array
of message queue headers. In addition to the general IPC permissions field
mentioned above, the queue structure contains the following fields:

e Pointers to the first and last messages on a linked list;

e The number of messages and the total number of data bytes on the linked list;
e The maximum number of bytes of data that can be on the linked list;

e The process IDs of the last processes to send and receive messages;

¢ Time stamps of the last msgsnd, msgrcv, and msgctl operations.

When a user calls msgget to create a new descriptor, the kernel searches the array
of message queues to see if one exists with the given key. If there is no entry for
the specified key, the kernel allocates a new queue structure, initializes it, and
returns an identifier to the user. Otherwise, it checks permissions and returns.

A process uses the msgsnd system call to send a message:

msgsnd (msgqid, msg, count, flag);

where msgqid is the descriptor of a message queue typically returned by a msgget
call, msg is a pointer to a structure consisting of a user-chosen integer type and a
character array, count gives the size of the data array, and flag specifies the action
the kernel should take if it runs out of internal buffer space. '
The kernel checks (Figure 11.4) that the sending process has write permission
for the message descriptor, that the message length does not exceed the system
limit, that the message queue does not contain too many bytes, and that the
message type is a positive integer. If all tests succeed, the kernel allocates space for
the message from a message map (recall Section 9.1) and copies the data from user
space. The kernel allocates a message header and puts it on the end of the linked
list of message headers for the message queue. It records the message type and

362 INTERPROCESS COMMUNICATION

algorithm msgsnd /* send a message */
input: (1) message queue descriptor
(2) address of message structure
(3) size of message
(4) flags
output: number of bytes sent
{
check legality of descriptor, permissions;
while (not enough space to store message)
{
if (flags specify not to wait)
return;
sleep(until event enough space is available);

get message header;
read message text from user space to kernel;
adjust data structures: enqueue message header,
message header points to data,
counts, time stamps, process ID;
wakeup all processes waiting to read message from queue;

Figure 11.4. Algorithm for Msgsnd

size in the message header, sets the message header to point to the message data,
and updates various statistics fields (number of messages and bytes on queue, time
stamps and process ID of sender) in the queue header. The kernel then awakens
processes that were asleep, waiting for messages to arrive on the queue. If the
number of bytes on the queue exceeds the queue’s limit, the process sleeps until
other messages are removed from the queue. If the process specified not to wait
(lag IPC_NOWAIT), however, it returns immediately with an error indication.
Figure 11.5 depicts messages on a queue, showing queue headers, linked lists of
message headers, and pointers from the message headers to a data area.

Consider the program in Figure 11.6: A process calls msgget to get a descriptor
for MSGKEY. It sets up a message of length 256 bytes, although it uses only the
first integer, copies its process ID into the message text, assigns the message type
value 1, then calls msgsnd to send the message. We will return to this example
later.

A process receives messages by

count = msgrev(id, msg, maxcount, type, flag);

where id is the message descriptor, msg is the address of a user structure to contain
the received message, maxcount is the size of the data array in msg, type specifies
the message type the user wants to read, and flag specifies what the kernel should

11.2 SYSTEM V IPC 363

Queue
Headers Message Headers Data Area

-

Figure 11.5. Data Structures for Messages

do if no messages are on the queue. The return value, count, is the number of
bytes returned to the user.

The kernel checks (Figure 11.7) that the user has the necessary access rights to
the message queue, as above. If the requested message type is 0, the kernel finds
the first message on the linked list. If its size is less than or equal to the size
requested by the user, the kernel copies the message data to the user data structure
and adjusts its internal structures appropriately: It decrements the count of
messages on the queue and the number of data bytes on the queue, sets the receive
time and receiving process ID, adjusts the linked list, and frees the kernel space
that had stored the message data. If processes were waiting to send messages
because there was no room on the list, the kernel awakens them. If the message is
bigger than maxcount specified by the user, the kernel returns an error for the
system call and leaves the message on the queue. If the process ignores size
constraints, however (bit MSG_NOERROR is set in flag), the kernel truncates the
message, returns the requested number of bytes, and removes the entire message
from the list.

364 INTERPROCESS COMMUNICATION

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define MSGKEY 75

struct msgform

long mtype;

char mtext[256];
};
main()

{

struct msgform msg;
int msgid, pid, *pint;

msgid = msgget(MSGKEY, 0777);

pid = getpidQ);

pint = (int *) msg.mtext;

pint = pid; / copy pid into message text */
msg.mtype = |,

msgsnd (msgid, &msg, sizeof(int), 0);
msgrev (msgid, &msg, 256, pid, 0); /* pid is used as the msg type */
printf("client: receive from pid %d\n", *pint);

Figure 11.6. A Client Process

A process can receive messages of a particular type by setting the type
parameter appropriately. If it is a positive integer, the kernel returns the first
message of the given type. If it is negative, the kernel finds the lowest type of all
messages on the queue, provided it is less than or equal to the absolute value of
type, and returns the first message of that type. For example, if a queue contains
three messages whose types are 3, 1, and 2, respectively, and a user requests a
message with type —2, the kernel returns the message of type 1. In all cases, if no
messages on the queue satisfy the receive request, the kernel puts the process to
sleep, unless the process had specified to return immediately by setting the
IPC_NOWAIT bit in flag.

Consider the programs in Figures 11.6 and 11.8. The program in Figure 11.8
shows the structure of a server that provides generic service to client processes. For
instance, it may receive requests from client processes to provide information from
a database; the server process is a single point of access to the database, making
consistency and security easier. The server creates a message structure by setting

11.2

SYSTEM V IPC

algorithm msgrcv /* receive message */

input:

(1) message descriptor

(2) address of data array for incoming message
(3) size of data array

(4) requested message type

(5) flags

output: number of bytes in returned message

{

loop:

check permissions;

check legality of message descriptor;
/* find message to return to user */
if (requested message type == 0)
consider first message on queue;
else if (requested message type > 0)
consider first message on queue with given type;
else /* requested message type < 0 */
consider first of the lowest typed messages on queue,
such that its type is <= absolute value of
requested type;
if (there is a message)
{
adjust message size or return error if user size too small;
copy message type, text from kernel space to user space;
unlink message from queue;
return;
)
/* no message */
if (flags specify not to sleep)
return with error;
sleep (event message arrives on queue);
goto loop;

Figure 11.7. Algorithm for Receiving a Message

365

the IPC_ CREAT flag in the msgget call and receives all messages of type 1 —
requests from client processes. It reads the message text, finds the process ID of
the client process, and sets the return message type to the client process ID. In this
example, it sends its process ID back to the client process in the message text, and
the client process receives messages whose message type equals its process ID.
Thus, the server process receives only messages sent to it by client processes, and
client processes receive only messages sent to them by the server. The processes
cooperate to set up multiple channels on one message queue.

366 INTERPROCESS COMMUNICATION

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define MSGKEY 75

struct msgform

{
long mtype;
char mtext[256];

} msg;

int msgid;

main()

{
int i, pid, *pint;
extern cleanupQ);

for i=0; i<20; i++)
signal(i, cleanup);
msgid = msgget(MSGKEY, 0777 | IPC_CREAT);

for (;;)
{
msgrev(msgid, &msg, 256, 1, 0);
pint = (int *) msg.mtext;
pid = *pint;
printf("server: receive from pid %d\n", pid);
msg.mtype = pid;
*pint = getpid();
msgsnd (msgid, &msg, sizeof(int), 0);

}

cleanup()

{

msgctl(msgid, IPC_RMID, 0); i
exitQ; i

Figure 11.8. A Server Process

Messages are formatted as type-data pairs, whereas file data is a byte stream.
The 1ype prefix allows processes to select messages of a particular type, if desired, a
feature not readily available in the file system. Processes can thus extract messages
of particular types from the message queue in the order that they arrive, and the
kernel maintains the proper order. Although it is possible to implement a message

11.2 SYSTEM V IPC 367

passing scheme at user level with the file system, messages provide applications
with a more efficient way to transfer data between processes.

A process can query the status of a message descriptor, set its status, and
remove a message descriptor with the msgctl system call. The syntax of the call is

msgctl(id, cmd, mstatbuf)

where id identifies the message descriptor, cmd specifies the type of command, and
mstatbuf is the address of a user data structure that will contain control parameters
or the results of a query. The implementation of the system call is straightforward;
the appendix specifies the parameters in detail.

Returning to the server example in Figure 11.8, the process catches signals and
calls the function cleanup to remove the message queue from the system. If it did
not catch signals or if it receives a SIGKILL signal (which cannot be caught), the
message queuc would remain in the system even though no processes refer to it.
Subsequent attempts to create (exclusively) a new message queue for the given key
would fail until it was removed.

11.2.2 Shared Memory

Processes can communicate directly with each other by sharing parts of their
virtual address space and then reading and writing the data stored in the shared
memory. The system calls for manipulating shared memory are similar to the
system calls for messages. The shmget system call creates a new region of shared
memory or returns an existing one, the shmat system call logically attaches a
region to the virtual address space of a process, the shmdt system call detaches a
region from the virtual address space of a process, and the shmctl system call
manipulates various parameters associated with the shared memory. Processes read
and write shared memory using the same machine instructions they use to read and
write regular memory. After attaching shared memory, it becomes part of the
virtual address space of a process, accessible in the same way other virtual
addresses are; no system calls are needed to access data in shared memory.
The syntax of the shmget system call is

shmid = shmget(key, size, flag);

where size is the number of bytes in the region. The kernel searches the shared
memory table for the given key: if it finds an entry and the permission modes are
acceptable, it returns the descriptor for the entry. If it does not find an entry and
the user had set the JPC_CREAT flag to create a new region, the kernel verifies
that the size is between system-wide minimum and maximum values and then
allocates a region data structure using algorithm allocreg (Section 6.5.2). The
kernel saves the permission modes, size, and a pointer to the region table entry in
the shared memory table (Figure 11.9) and sets a flag there to indicate that no
memory is associated with the region. It allocates memory (page tables and so on)
for the region only when a process attaches the region to its address space. The

368 INTERPROCESS COMMUNICATION

kemel also sets a flag on the region table entry to indicate that the region should
not be freed when the last process attached to it exits. Thus, data in shared
memory remains intact even though no processes include it as part of their virtual
address space.

Shared Process Table -
Memory Region Per Process
Table Table Region Table
R
N
(after
shmat)

Figure 11.9. Data Structures for Shared Memory

A process attaches a shared memory region to its virtual address space with the
shmat system call:

virtaddr = shmat(id, addr, flags);

Id, returned by a previous shmget system call, identifies the shared memory region,
addr is the virtual address where the user wants to attach the shared memory, and
flags specify whether the region is read-only and whether the kernel should round
off the user-specified address. The return value, virtaddr, is the virtual address
where the kernel attached the region, not necessarily the value requested by the
process.

When executing the shmat system call, the kernel verifies that the process has
the necessary permissions to access the region (Figure 11.10). It examines the
address the user specifies: If 0, the kernel chooses a convenient virtual address.

11.2 SYSTEM V IPC 369

algorithm shmat /* attach shared memory */
input: (1) shared memory descriptor

(2) virtual address to attach memory

(3) flags
output: virtual address where memory was attached

check validity of descriptor, permissions;
if (user specified virtual address)

round off virtual address, as specified by flags;

check legality of virtual address, size of region;
}
else /* user wants kernel to find good address */

kernel picks virtual address: error if none available;
attach region to process address space (algorithm attachreg);
if (region being attached for first time)

allocate page tables, memory for region

(algorithm growreg);

return(virtual address where attached);

Figure 11.10. Algorithm for Attaching Shared Memory

The shared memory must not overlap other regions in the process virtual address
space; hence it must be chosen judiciously so that other regions do not grow into
the shared memory. For instance, a process can increase the size of its data region
with the brk system call, and the new data region is virtually contiguous with the
previous data region; therefore, the kernel should not attach a shared memory
region close to the data region. Similarly, it should not place shared memory close
to the top of the stack so that the stack will not grow into it. For example, if the
stack grows towards higher addresses, the best place for shared memory is
immediately before the start of the stack region.

The kernel checks that the shared memory region fits into the process address
space and attaches the region, using algorithm attachreg. If the calling process is
the first to attach the region, the kernel allocates the necessary tables, using
algorithm growreg, adjusts the shared memory table entry field for “last time
attached,” and returns the virtual address at which it attached the region.

A process detaches a shared memory region from its virtual address space by

shmdt(addr)

where addr is the virtual address returned by a prior shmat call. Although it
would seem more logical to pass an identifier, the virtual address of the shared
memory is used so that a process can distinguish between several instances of a
shared memory region that are attached to its address space, and because the

370 INTERPROCESS COMMUNICATION

identifier may have been removed. The kernel searches for the process region
attached at the indicated virtual address and detaches it from the process address
space, using algorithm detachreg (Section 6.5.7). Because the region tables have
no back pointers to the shared memory table, the kernel searches the shared
memory table for the entry that points to the region and adjusts the field for the
time the region was last detached.

Consider the program in Figure 11.11: A process creates a 128K-byte shared
memory region and attaches it twice to its address space at different virtual
addresses. It writes data in the “first” shared memory and reads it from the
“second” shared memory. Figure 11.12 shows another process attaching the same
region (it gets only 64K bytes, to show that each process can attach different
amounts of a shared memory region); it waits until the first process writes a
nonzero value in the first word of the shared memory region and then reads the
shared memory. The first process pauses to give the second process a chance to
execute; when the first process catches a signal, it removes the shared memory
region.

A process uses the shmctl system call to query status and set parameters for the
shared memory region:

shmetl(id, cmd, shmstatbuf);

Id identifies the shared memory table entry, cmd specifies the type of operation,
and shmstatbuf is the address of a user-level data structure that contains the status
information of the shared memory table entry when querying or setting its status.
The kernel treats the commands for querying status and changing owner and
permissions similar to the implementation for messages. When removing a shared
memory region, the kernel frees the entry and looks at the region table entry: If no
process has the region attached to its virtual address space, it frees the region table
entry and all its resources, using algorithm freereg (Section 6.5.6). If the region is
still attached to some processes (its reference count is greater than 0), the kernel
just clears the flag that indicates the region should not be freed when the last
process detaches the region. Processes that are using the shared memory may
continue doing so, but no new processes can attach it. When all processes detach
the region, the kernel frees the region. This is analogous to the case in the file
system where a process can open a file and continue to access it after it is unlinked.

11.2.3 Semaphores

The semaphore system calls allow processes to synchronize execution by doing a set
of operations atomically on a set of semaphores. Before the implementation of
semaphores, a process would create a lock file with the crear system call if it
wanted to lock a resource: The creat fails if the file already exists, and the process
would assumé that another process had the resource locked. The major
disadvantages of this approach are that the process does not know when to try
again, and lock files may inadvertently be left behind when the system crashes or is

11.2

SYSTEM V IPC

#includ . <sys/types.h>
#include\ . <sys/ipc.h>
#include <sys/shm.h>
#define SHMKEY 75
#define K 1024

int shmid;

main()

{

}

int i, *pint;

char *addrl, *addr2;
extern char *shmat();
extern cleanup();

for i=0; i<20; i++)
signal(i, cleanup);
shmid = shmget(SHMKEY, 128 * K, 0777 | IPC_CREAT);
addrl = shmat(shmid, 0, 0);
addr2 = shmat(shmid, 0, 0);
printf(“addrl 0x%x addr2 0x%x\n”, addrl, addr2):
pint = (int *) addrl;

for i=0; i< 256; i++)
*pint++ = j;

pint = (int *) addrl;

*pint = 256;

pint - (int, *) addr2;
for (i="0; i< 256; i++)
printf(“index %d\tvalue %d\n”, i, *pint++);

pause();

cleanup()

shmetl(shmid, IPC_RMID, 0);
exit(Q;
\]

Figure 11.11. Attaching Shared Memory Twice to a Process

3N

3”2 INTERPROCESS COMMUNICATION

#include <sys/types.h> .
#include <sys/ipc.h>
#include <sys/shm.h>

#define SHMKEY 75
#define K 1024
int shmid;

main()
{
int i, *pint;
char *addr;
extern char *shmat();

shmid = shmget(SHMKEY, 64 * K, 0777);

addr = shmat(shmid, 0, 0);
pint = (int *) addr;

while (*pint == 0)

for i=0; i< 256; i++)
printf("%d\n", *pint++);

Figure 11.12. Sharing Memory Between Processes

rebooted.

Dijkstra published the Dekker algorithm that describes an implementation of
semaphores, integer-valued objects that have two atomic operations defined for
them: P and V (see [Dijkstra 68]). The P operation decrements the value of a
semaphore if its value is greater than 0, and the ¥ operation increments its value.
Because the operations are atomic, at most one P or V operation can succeed on a
semaphore at any time. The semaphore system calls in System V are a
generalization of Dijkstra’s P and V operations, in that several operations can be
done simultaneously and the increment and decrement operations can be by values
greater than 1. The kernel does all the operations atomically; no other processes
adjust the semaphore values until all operations are done. If the kernel cannot do
all the operations, it does not do any; the process sleeps until it can do all the
operations, as will be explained.

A semaphore in UNIX System V consists of the following elements:

e The value of the semaphore,
e The process ID of the last process to manipulate the semaphore,

11.2 SYSTEM V IPC 373

¢ The number of processes waiting for the semaphore value to increase,
e The number of processes waiting for the semaphore value to equal 0.

The semaphore system calls are semget to create and gain access to a set of
semaphores, semct! to do various control operations on the set, and semop to
manipulate the values of semaphores. :

Semaphore

Table Semaphore Arrays

{0 [T [2[3 456
| 0 [T J2]

Figure 11.13. Data Structures for Semaphores

The semget system, call creates an array of semaphores:
id = semget(key, count, flag);

where key, flag and id are similar to those parameters for messages and shared
memory. The kernel allocates an entry that points to an array of semaphore
structures \with count elements (Figure 11.13). The entry also specifies the number
of semaphores, in the array, the time of the last semop call, and the time of the last
semctl call. For example, the semget system call in Figure 11.14 creates a
semaphore with two elements.

Processes manipulate semaphores with the semop system call:

oldval = semop(id, oplist, count);

1d is the descriptor returned by semget, oplist is a pointer to an afray of semaphore
operations, and count is the size of the array. The return value, oldval, is the value

374 INTERPROCESS COMMUNICATION

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

#define SEMKEY 75
int semid;
unsigned int count;
/* definition of sembuf in file sys/sem.h
* struct sembuf {
* unsigned shortsem_num;
* short sem_op;
* short sem _flg;
)i+
struct sembuf psembuf, vsembuf; /* ops for Pand V */

main(argc, argv)
int argg;
char *argv(];

int i, first, second;
short ‘nitarray[2], outarray(2];
extern cleanup();

if (argc == 1)
{
for i=0; i<20;, i++)
signal(i, cleanpp);
semid = semget(SEMKEY, 2, 0777 | IPC_CREAT);
initarray[0] = initarray(1] = 1; ‘
semctl(semid, 2, SETALL, initarray);
semctl(semid, 2, GETALL, outarray);
printf("sem init vals %d %d\n", outarray[0], outarray[1]);
pause(); /* sleep until awakened by a signal */

}

/* continued next page */

¥

Figure 11.14. Locking and Unlocking Operations

of the last semaphore operated on in the set before the operation was done. The
format of each element of oplist is

e the semaphore number identifying the semaphore array entry being operated on,
o the operation,
o flags.

11.2 SYSTEM'VIPC ' 378

else if (argv[1][0] ==3’)
{

first = 0;

second = 1;

first = 1;
second = 0;
}

semid = semget(SEMKEY, 2, 0777);
psembuf.sem_op = —1;
psembuf.sem_fig = SEM_UNDO;
vsembuf.sem_op = 1;
vsembuf.sem_flg = SEM_UNDO;

{or (count = 0; ; count++)

psembuf.sem_num = first;

semop(semid, &psembuf, 1);
psembuf.sem_num = second;

semop (semid, &psembuf, 1);

printf("proc %d count %d\n", getpid(), count);
vsembuf.sem_num = second;

semop(semid, &vsembuf, 1);
vsembuf.sem_num = first;

semop(semid, &vsembuf, 1);

}
cleanupQ

semctl(semid, 2, IPC_RMID, 0);
exitQ;

Figure 11.14. Locking and Unlocking Operations (continued)

The kernel reads the array of semaphore operations, oplist, from the user
address space and verifies that the semaphore numbers are legal and that the
process has the necessary permissions to read or change the semaphores (Figure
11.15). If permission is not allowed, the system call fails. If the kernel must sleep
as it does the list of operations, it restores the semaphores it has already operated
on to their values at the start of the system call; it sleeps until the event for which

37 INTERPROCESS COMMUNICATION

algorithm semop /* semaphore operations */
inputs: (1) semaphore descriptor

(2) array of semaphore operations

(3) number of elements in array
output: start value of last semaphore operated on

check legality of semaphore descriptor;
start: read array of semaphore operations from user to kernel space;
check permissions for all semaphore operations;

for (each semaphore operation in array)
{

if (semaphore operation is positive)

add “operation” to semaphore value;
if (UNDO flag set on semaphore operation)
update process undo structure;
wakeup all processes sleeping (event semaphore value increases);.

else if (semaphore operation is negative)

if (“operation” + semaphore value >= 0)
{
add “operation” to semaphore value;
if (UNDO flag set)
update process undo structure;
if (semaphore value 0)
/* continued next page */

Figure 11.15. Algorithm for Semaphore Operation

it is waiting occurs and then restarts the system call. Because the kernel saves the
semaphore operations in a global array, it reads the array from user space again if
it must restart the system call. Thus, operations are done atomically — either all
at once or not at all.

The kernel changes the value of a semaphore according to the value of the
operation. If positive, it increments the value of the semaphore and awakens all
processes that are waiting for the value of the semaphore to increase. If the
semaphore operation is 0, the kernel checks the semaphore value: If 0, it continues
with the other operations in the array; otherwise, it increments the number of
processes asleep, waiting for the semaphore value to be 0, and goes to sleep. If the
semaphore operation is negative and its absolute value is less than or equal to the
value of the semaphore, the kernel adds the operation value (a negative number) to
the semaphore value. If the result is O, the kernel awakens all processes asleep,
waiting for the semaphore value to be 0. If the value of the semaphore is less than

11.2 » SYSTEM V IPC m

wakeup all processes sleeping (event
semaphore value becomes 0);
continue;
}
reverse all semaphore operations aiready done
this system call (previous iterations);
if (flags specify not to sleep)
return with error;
sleep (event semaphore value increases);
goto start; /* start loop from beginning */

else /* semaphore operation is zero */

if (semaphore value non 0)
{
reverse all semaphore operations done
this system call;
if (flags specify not to sleep)
return with error;)
sleep (event semaphore value == 0);
goto start; /* restart loop */

}
}
} /* for loop ends here */
/* semaphore operations all succeeded */
update time stamps, process ID’s;
return value of last semaphore operated on before call succeeded;

Figure 11.15. Algorithm for Semaphore Operation (continued)

the absolute value of the semaphore operation, the kernel puts the process to sleep
on the event that the value of the semaphore increases. Whenever a process sleeps
in the middle of a semaphore operation, it sleeps at an interruptible priority; hence,
it wakes up on receipt of a signal.

Consider the program in Figure 11.14, and suppose a user executes it (a.out)
three times in the following sequence:

a.out &
a.out a &
a.outb &

When run without any parameters, the process creates a semaphore set with two
elements and initializes their values to 1. Then, it pauses and sleeps until
awakened by a signal, when it removes the semaphore in cleanup. ‘'When executing
the program with parameter ’a’, the process (A) does four separate semaphore

378 INTERPROCESS COMMUNICATION

operations in the loop: It decrements the value of semaphore 0, decrements the
value of semaphore 1, executes the print statement, and then increments the values
of semaphores 1 and 0. A process goes to sleep if it attempts, to decrement the
value of a semaphore that is 0, and hence the semaphore is considered locked:
Because the semaphores were initialized to 1 and no other processes are using the
semaphores, process A will never sleep, and the semaphore values will oscillate
between 1 and 0. When executing the program with parameter 'b’, the process (B)
decrements semaphores 0 and 1 in the opposite order from process A. When
processes A and B run simultaneously, a situation could arise whereby process A
has locked semaphore 0 and wants to lock semaphore 1, but process B has locked
semaphore 1 and wants to lock semaphore 0. Both processes sleep, unable to
continue. They are deadlocked and exit only on receipt of a signal.

To avoid such problems, processes can do multiple semaphore operations
simultaneously. Using the following structures and code in the last example would
give the desired effect.

struct sembuf psembufl2];

psembuf{0}.sem_num = 0;
psembufl1).sem_num = 1;
psembuf{0].sem op = —1;
psembufl1).sem_op = —1;
semop(semid, psembuf, 2);

Psembuf is an array of semaphore operations that decrements semaphores 0 and 1
simultaneously. If either operation cannot succeed, the process sleeps until they
both succeed. For instance, if the value of semaphore 0 is 1 and the value of
semaphore 1 is 0, the kernel would leave the values intact until it can decrement
both values.

A process can set the IPC_NOWAIT flag in the semop system call; if the kernel
arrives at a situation where the process would sleep because it must wait for the
semaphore value to exceed a particular value or for it to have value 0, the kernel
returns from the system call with an error condition. Thus, it is possible to
implement a conditional semaphore, whereby a process does not sleep if it cannot
do the atomic action.

Dangerous situations could occur if a process does a semaphore operation,
presumably locking some resource, and then exits without resetting the semaphore
value. Such situations can occur as the result of a programmer error or because of
receipt of a signal that causes sudden termination of a process. If, in Figure 11.14
again, the process receives a kill signal after decrementing the semaphore values, it
has no chance to reincrement them, because kill signals cannot be caught. Hence,
other processes would find the semaphore locked even though the process that had
locked it no longer exists. To avoid such problems, a process can set the
SEM_UNDO fiag in the semop call; when it exits, the kernel reverses the effect of
every semaphore operation the process had done. To implement this feature, the
kernel maintains a table with one entry for every process in the system. Each entry

11.2 SYSTEM V IPC 379

Per Process

Undo Headers Undo Strucures

Desc Desc Desc
~>Num—»Num{—sNum
Valug Valud Value

€sC
um

Valug

Figure 11.16. Undo Structures for Semaphores

points to a set of undo structures, one for each semaphore used by the process
(Figure 11.16). Each undo structure is an array of triples consisting of a
semaphore ID, a semaphore number in the set identified by ID, and an adjustment
value.

The kernel allocates undo structures dynamically when a process executes its
first semop system call with the SEM_UNDO flag set. On subsequent semop
system calls with- the SEM_UNDO flag set, the kernel searches the process undo
structures for one with the same semaphore ID and number as the semop
operation: If it finds one, it subtracts the value of the semaphore operation from
the adjustment value. Thus, the undo structure contains a negated summation of
all semaphore operations the process had done on the semaphore for which the
SEM UNDO flag was set. If no undo structure for the semaphore exists, the
kernel creates one, sorting a list of structures by semaphore ID and number. If an
adjustment value drops to 0, the kernel removes the undo structure. When a
process exits, the kernel calls a special routine that goes through the undo
structures associated with the process and does the specified action on the indicated
semaphore.

Referring back to Figure 11.14, the kernel creates an undo structure every time
the process decrements the semaphore value and removes the structure every time

380 INTERPROCESS COMMUNICATION

semaphore id | | semid semaphore id | | semid | semid
isemaphorc num 0 jsemaphore num 0 1
adjustment 1 adjustment 1 1
(a) After first operation (b) After second operation

semaphore id | [semid

semaphore num 0 empty
adjustment 1
(c) After third operation (d) After fourth operation

Figure 11.17. Sequence of Undo Structures

the process increments a semaphore value, because the adjustment value of the
undo structure is 0. Figure 11.17 shows the sequence when invoking the program
with parameter "a’. After the first operation, the process has one triple for semid
with semaphore number 0 and adjustment value 1, and after the second operation,
it has a second triple with semaphore number 1 and adjustment value 1. If the
process were to exit suddenly now, the kernel would go through the triples and add
the value 1 to each semaphore, restoring their values to 0. In the regular case, the
kernel decrements the adjustment value of semaphore 1 during the third operation,
corresponding to the increment of the semaphore value, and it removes the triple,
because its adjustment value is 0. After the fourth operation, the process has no
more triples, because the adjustment values would all be 0. ;

The array operations on semaphores allow processes to avoid deadlock problems,
as illustrated above, but they are complicated, and most applications do not need
their full pawer. Applications that require use of multiple semaphores should deal
with deadlock conditions at user level, and the kernel should not contain such
complicated system calls.

The semctl system call contains a myriad of control operations for semaphores:

semctl(id, number, cmd, arg);

11.2 SYSTEM V IPC 381

Arg is declared as a union:

union semunion {
int val;
struct semid_ds *semstat; /* see appendix for definition */
unsigned short *array;

} arg;

The kernel interprets arg based on the value of cmd, similar to the way it interprets
ioctl commands (Chapter 10). The expected actions take place for the cmds that
retrieve or set control parameters (permissions and others), set one or all semaphore
values in a set, or read the semaphore values. The appendix gives the details for
each command. For the remove command, /PC_RMID, the kernel finds all
processes that have undo structures for the semaphore and removes the appropriate
triples. Then, it reinitializes the semaphore data structure and wakes up all
processes sleeping until the occurence of some semaphore event: When the
processes resume execution, they find that the semaphore ID is no longer valid and
return an error to the caller.

11.2.4 General Comments

There are several similarities between the file system and the IPC mechanisms.
The “get” system calls are similar to the creat and open system calls, and the
“control” system calls contain an option to remove descriptors from the system,
similar to the wunlink system call. But no operations are analogous to the file
system close system call. Thus, the kernel has no record of which processes can
access an IPC mechanism, and, indeed, processes can access an IPC mechanism if
they guess the correct ID and if access permissions are suitable, even though they
never did a “get” call. The kernel cannot clean up unused IPC structures
automatically, because it never knows when they are no longer needed. Errant
processes can thus leave unneeded and unused structures cluttering the system.
Although the kernel can save state information and data in the IPC structures after
the death of a process, it is better to use files for such purposes.

The IPC mechanisms introduce a new name space, keys, instead of the
traditional, all-pervasive files. It is difficult to extend the semantics of keys across a
network, because they may describe different objects on different machines: In
short, they were designed for a single-machine environment. File names are more
amenable to a distributed environment as will be seen in Chapter 13. Use of keys
instead of file names also means that the IPC facilities are an entity unto
themselves, useful for special-purpose applications, but lacking the tool-building
capabilities inherent in pipes and files, for example. Much of their functionality
can be duplicated using other system facilities, so, esthetically, they should not be
in the kernel. However, they provide better performance for closely cooperating
application packages than standard file system facilities (see the exercises).

382 INTERPROCESS COMMUNICATION

11.3 NETWORK COMMUNICATIONS

Programs such as mail, remote file transfer, and remote login that wish to
communicate with other machines have historically used ad hoc methods to
establish connections and to exchange data. For example, standard mail programs
save the text of a user’s mail messages in a particular file, such as *“/usr/mail/mjb”
for user “mjb”. When a person sends mail to another user on the same machine,
the mail program appends the mail to the addressee’s file, using lock files and
temporary files to preserve consistency. When a person reads mail, the mail
program opens the person’s mail file and reads the messages. To send mail to a
user on another machine, the mail program must ultimately find the appropriate
mail file on the other machine. Since it cannot manipulate files there directly, a
process on the other machine must act as an agent for the local mail process; hence

the local process needs a way to communicate with its remote agent-across machine

boundaries. The local process is called the client of the remote servar process.

Because the UNIX system creates new processes via the fork system call, the
server process must exist before the client process attempts to establish a
connection. It would be inconsistent with the design of the system if the remote
kernel were to create a new process when a connection request comes across the
network. Instead, some process, usually init, creates a server process that reads a
communications channel until it receives a request for service and then follows
some protocol to complete the setup of the connection. Client and server programs
typically choose the network media and protocols according to information in
application data bases, or the data may be hard-coded into the programs.

For example, the uucp program allows file transfer across a network and remote
execution of commands (see [Nowitz 80]). A client process queries a data base for
address and routing information (such as a telephone number), opens an auto-
dialer device; writes Or-ioctls the information on the open file descriptor, and calls
up the remote machine. The remote machine may have special lines dedicated for
use by uucp; its init process spawns getty processes — the servers — to monitor the
lines and wait for connection notification. After the hardware connection is
established, the client process logs in, following the usual login protocol: getty
execs a special command interpreter, uucico, specified in the */etc/passwd” file,
and the client process writes command sequences to the remote machine, causing
the remote machine to execute processes on behalf of the local machine.

Network communications have posed a problem for UNIX systems, because
messages must frequently include data and control portions. The control portion
may contain addressing information to specify the destination of a message.
Addressing information is structured according to the type of network and protocol
being used. Hence, processes need to know what type of network they are talking
to, going against the principle that users do not have to be aware of a file type,
because all devices look like files. Traditional methods for implementing network
communications consequently rely heavily on the ioct! system call to specify control
information, but usage is not uniform across network types. This has the
unfortunate side effect that programs designed for one network may not be able to

114 NETWORK COMMUNICATIONS

work for other networks.

There has been considerable effort to improve network interfaces ... <ivin
systems. The streams implementation in the latest releases of System V provides
an elegant mechanism for network support, because protocol modules can be
combined flexibly by pushing them onto open streams and their use is consistent at
user level. The next section briefly describes sockets, the BSD solution to the
problem.

11.4 SOCKETS

The previous section showed how processes on different machines can communicate,
but the methods by which they establish communications are likely to differ,
depending on protocols and media. Furthermore, the methods may not allow
processes to communicate with other processes on the same machine, because they
assume the existence of a server process that sleeps in a driver open or read system
call. To provide common methods for interprocess communication and to allow use
of sophisticated network protocols, the BSD system provides a mechanism known as
sockets (see [Berkeley 83]). This section briefly describes some user-level aspects
of sockets.

Client Process Server Process
Socket Layer \ / Socket Layer
| 1
| |
TCP TCP
Protocol Layer | l Protocol Layer
IP 1P
! I
Device Layer Eg::::t E]t)l:?:::t Device Layer
/
Network

Figure 11.18. Sockets Model

384 INTERPROCESS COMMUNICATION

The kernel structure consists of three parts: the socket layer, the protocol layer,
and the device layer (Figure 11.18). The socket layer provides the interface
between the system calls and the lower layers, the protocol layer contains the
protocol modules used for communication (TCP and IP in the figure), and the
device layer contains the device drivers that control the network devices. Legal
combinations of protocols and drivers are specified when configuring the system, a
method that is not as flexible as pushing streams modules. Processes communicate
using the client-server model: a server process listens to a socket, one end point of
a two-way communications path, and client processes communicate to the server
process over another socket, the other end point of the communications path, which
may be on another machine. The kernel maintains internal connections and routes
data from client to server.

Sockets that share common communications properties, such as naming
conventions and protocol address formats, are grouped into domains. The 4.2 BSD
system supports the “UNIX system domain” for processes communicating on one
machine and the “Internet domain” for processes communicating across a network
using the DARPA (Defense Advanced Research Project Agency) communications
protocols (se¢ [Postel 80] and [Postel 81]). Each socket has a type — a virtual
circuit (stream socket in the Berkeley terminology) or datagram. A virtual circuit
allows sequenced, reliable delivery of data. Datagrams do not guarantee sequenced,
reliable, or unduplicated delivery, but they are less expensive than virtual circuits,
because they do not require expensive setup operations; hence, they are useful for
some types of communication. The system contains a default protocol for every
legal domain-socket type combination. For example, the Transport Connect
Protocol (TCP) provides virtual circuit service and the User Datagram Protocgl
(UDP) provides datagram service in the Internet domain.

The socket mechanism contains several system calls. The socket system call
establishes the end point of a communications link.

sd = socket(format, type, protocol);

Format specifies the communications domain (the UNIX system domain or the
Internet domain), type indicates the type of communication over the socket (virtual
circuit or datagram), and protocol indicates a particular protocol to control the
communication. Processes use the socket descriptor sd in other system calls. The
close system call closes sockets.

The bind system call associates a name with the socket descriptor:

bind (sd, address, length);

Sd is the socket descriptor, and address points to a structure that specifies an
identifier specific to the communications domain and protocol specified in the socket
system call. Length is the length of the address structure; without this parameter,
the kernel would not know how long the address is because it can vary across
domains and protocols. For example, an address in the UNIX system domain is a
file name. Server processes bind addresses to sockets and “advertise” their names

114 SOCKETS 385

to identify themselves to client processes.
The connect system call requests that the kernel make a connection to an
existing socket:

connect(sd, address, length);

The semantics of the parameters are the same as for bind, but address is the
address of the target socket that will form the other end of the communications
line. Both sockets must use the same communications domain and protocol, and
the kernel arranges that the communications links are set up correctly. If the type
of the socket is a datagram, the connect call informs the kernel of the address to be
used on subsequent send calls over the socket; no connections are made at the time
of the call.

When a server process arranges to accept connections over a virtual circuit, the
kernel must queue incoming requests until it can service them. The listen system
call specifies the maximum queue length:

listen(sd, glength)

where sd is the socket descriptor and gqlength is the maximum number of
outstanding requests.

Client Process Server Process

listen addr accep't: addr

Figure 11.19. A Server Accepting a Call

The accept call receives incoming requests for a connection to a server process:
nsd = accept(sd, address, addrlen);

where sd is the socket descriptor, address points to a .user data array that the
kernel fills with the return address of the connecting client, and addrien indicates
the size of the user array. When accept returns, the kernel overwrites the contents
of addrlen with a number that indicates the amount of space taken up by the
address. Accept returns a new socket descriptor nsd, different from the socket
descriptor sd. A server can continue listening to the advertised socket while
communicating with a client process over a separate communications channel
(Figure 11.19).

386 INTERPROCESS COMMUNICATION

The send and recv system calls transmit data over a connected socket:
count = send(sd, msg, length, flags);

where sd is the socket descriptor, msg is a pointer to the data being sent, length is
its length, and count is the number of bytes actually sent. The flags parameter
may be set to the value SOF OOB to send data “out-of-band,” meaning that data
being sent is not considered part of the regular sequence of data exchange between
the communicating processes. A “remote login” program, for instance, may send
an “out of band” message to simulate a user hitting the delete key at a terminal.
The syntax of the recv system calls is

count = recv(sd, buf, length, flags);

where buf is the data array for incoming data, length is the expected length, and
count is the number of bytes copied to the user program. Flags can be set to
“peek” at an incoming message and examine its contents without removing it from
the queue, or to receive “out of band” data. The datagram versions of these system
calls, sendto and recvfrom, have additional parameters for addresses. Processes can
use read and write system calls on stream sockets instead of send and recv after the
connection is set up. Thus, servers can take care of network-specific protocol
negotiation and spawn processes that use read and write calls only, as if they are
using regular files.
The shutdown system call closes a socket connection:

shutdown (sd, mode)

where mode indicates whether the sending side, the receiving side, or both sides no
longer allow data transmission. It informs the underlying protocols to close down
the network communications, but the socket descriptors are still intact. The close
system call frees the socket descriptor.

The getsockname system call gets the name of a socket bound by a previous
bind call:

getsockname(sd, name, length);

The getsockopt and setsockopt calls retrieve and set various options associated with
the socket, according to the communications domain and protocol of the socket.
Consider the server program in Figure 11.20. The process creates a stream
socket in the “UNIX system domain” and binds the name sockname to it. Then it
invokes the listen system call to specify the internal queue length for incoming
messages and enters a loop, waiting for incoming requests. The accept call sleeps
until the underlying protocol notices that a connection request is directed toward
the socket with the bound name; then, accept returns a new descriptor for the
incoming request. The server process forks a process to communicate with the
client process: parent and child processes close their respective descriptors so that
they do not interfere with communications traffic of the other process. The child
process carries on its conversation with the client process, terminating, in this

114 SOCKETS 387

#include <sys/types.h>
#include <sys/socket.h>

main()
{
int sd, ns;
char buf{256];
struct sockaddr sockaddr;
int fromlen;

sd = socket(AF_UNIX, SOCK_STREAM, 0);

/* bind name — don’t include null char in the name */
bind (sd, "sockname", sizeof ("sockname”) — 1);
listen(sd, 1);

for (;;)
{

ns = accept(sd, &sockaddr, &fromlen);
if (fork() == 0)
{
/* child */
close(sd);
read(ns, buf, sizeof(buf));
printf("server read '%s’\n", buf);
exit(Q; ’
}

close(ns);

- Figure 11.20. A Server Process in the UNIX System Domain

example, after return from the read system call. The server process loops and waits
for another connection request in the accept call.

Figure 11.21 shows the client process that corresponds to the server process.
The client creates a socket in the same domain as the server and issues a connect
request for the name sockname, bound to some socket by a server process. When
the connect returns, the client process has a virtual circuit to a server process. In
this example, it writes a single message and exits.

If the server process were to serve processes on a network, its system calls may
specify that the socket is in the “Internet domain” by

socket(AF_INET, SOCK_STREAM, 0);

3s§ INTERPROCESS COMMUNICATION

#tinclude <sys/types.h>
#include <sys/socket.h>

main()
{
int sd, ns;
char bufl256];
struct sockaddr sockaddr;
int fromlen;

sd = socket(AF_UNIX, SOCK_STREAM, 0);
/* connect to name — null char is not part of name */
if (connect(sd, "sockname”, sizeof ("sockname”) — 1) == —1)

exit();

write(sd, "hi guy", 6);

Figure 11.21. A Client Process in the UNIX System Domain

and bind a network address obtained from a name server. The BSD system has
library calls that do these functions. Similarly, the second parameter to the client’s
connect wouid contain the addressing information needed to identify the machine
on the network (or routing addresses to send messages to the destination machine
via intermediate machines) and additional information to identify the particular
socket on the destination machine. If the server wanted to listen to network and
local processes, it would use two sockets and the select call to determine which
client is making a connection.

11.5 SUMMARY

This chapter has presented several forms of interprocess communication. It
considered process tracing, where two processes cooperate to provide a useful
facility for program debugging. However, process tracing via ptrace is expensive
and primitive, because a limited amount of data can be transferred during each
call, many context switches occur, communication is restricted to parent-child
processes, and processes must agree \to be traced before execution. UNIX System
V provides an IPC patkage that includes messages, semaphores, and shared
memory. Unfortunately, they are special purpose, do not mesh well with other
operating system primitives, and are not extensible over a network. However, they
are useful to many applications and afford better performance compared to other
schemes. ‘ ‘

11.5 SUMMARY 389

UNIX systems support a wide variety of networks. Traditional methods for
implementing protocol negotiation rely heavily on the ioct! system call but their
usage is not uniform across network types. The BSD system has introduced the
socket system calls to providle a more general framework for network
communications. In the future, System V will use the streams mechanism
described in Chapter 10 to handle network configurations uniformly.

11.6 EXERCISES

1. What happens if the wait call is omitted by debug (Figure 11.3)? (Hint: There are
two possibilities.)

2. A debugger using ptrace reads one word of data from a traced process per call. What
modifications should be made in the kernel to read many words with one call? What
modifications would be necessary for ptrace?

3. Extend the ptrace call such that pid need not be the child process of the caller.
Consider the security issues: Under what circumstances should a process be allowed to
read the address space of another, arbitrary process? Under what circumstances
should it be able to write the address space of another process?

4. Implement the set of message system calls as a user-level library, using regular files,
named pipes, and locking primitives. When creating a message queue, create a control
file that records status:of the queue; the file should be protected with file locks or other
convenient mechanisms' When sending a message of a given type, create a named
pipe for all messages of that type if such a file does not already exist, and write the
data (with a prepended byte count) to the named pipe. The control file should
correlate the type number with the name of the named pipe. When reading messages,
the control file directs the process to the correct named pipe. Compare this scheme to
the implementation described in the chapter for performance, code complexity,
functionality.

5. What is the program in Figure 11.22 trying to do?

* 6. Write a program that attaches shared memory too close to the end of its stack, and let
the stack grow into the shared memory region. When does it incur a memory fault?

7. Rewrite the program in Figure 11.14 and use the JPC_NOWAIT flag, so that the
semaphore operations are conditional. Demonstrate how this avoids deadlocks.

8. Show how Dijkstra’s P and V semaphore operations could be implemented with named
pipes. How would you implement a conditional P operation?

9. Write programs that lock resources, using (a) named pipes, (b) the creat and unlink
system calls, and (c) the message system calls. Compare their performance.

10. Wrijte programs to 'comparc the performance of the message system calls to read and
write on named pipes.

11. Write ‘programs to compare the data-transfer speed using shared memory and
messages. The programs for shared memory should include semaphdres to synchronize
completion of reads and writes.

390

INTERPROCESS COMMUNICATION

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#define ALLTYPES 0

main(Q

{
struct msgform
{
long mtype;
char mtext[1024];
} msg;
register unsigned int id;

for Gd = 0; ; id++)
while (msgrev(id, &msg, 1024, ALLTYPES, IPC_NOWAIT) > 0)

’

Figure 11.22. An Eavesdropping Program

12

MULTIPROCESSOR
SYSTEMS

The classic design of the UNIX system assumes the use of a uniprocessor
architecture, consisting of one CPU, memory, and peripherals. A multiprocessor
architecture contains two or more CPUs that share common memory and
peripherals (Figure 12.1), potentially providing greater system throughput, because
processes can run concurrently on different processors. Each CPU executes
independently, but all of them execute one copy of the kernel. Processes behave
exactly as they would on a uniprocessor system — the semantics of each system call
remain the same — but they can migrate between processors transparently.
Unfortunately, a process does not consume less CPU time. Some multiprocessor
systems are called attached processor systems, because the peripherals may not be
accessible to all processors. This chapter will not distinguish between attached
processor systems and general multiprocessor systems, unless explicitly stated.

Allowing several processors to execute simultaneously in kernel mode on beha.f
of different processes causes integrity problems unless protection mechanisms are
used. This chapter explains why the original design of the UNIX system cannot
run unchanged on multiprocessor systems and considers two designs for running on
a multiprocessor.

391

392 MULTIPROCESSOR SYSTEMS

Processor Processor Processor

1 2 n

Memory Peripherals

Figure 12.1. Multiprocessor Configuration

12.1 PROBLEM OF MULTIPROCESSOR SYSTEMS

Recall from Chapter 2 that the design of the UNIX system protects the integrity of
kernel data structures by two policies: The kernel cannot preempt a process and
switch context to another process while executing in kernel mode, and it masks out
interrupts when executing a critical region of code if an interrupt handler could
corrupt kernel data structures. On a multiprocessor, however, if two or more
processes execute simultaneously in the kernel on separate processors, the kernel
could become corrupt in spite of the protective measures that suffice for
uniprocessor systems.

struct queue {

} *bp, *bp;

bpl—>forp = bp—> forp;

bpl—>backp = bp;

bp—>forp = bpl;

/* consider possible context switch here */
bpl—>forp—>backp = bpl;

Figure 12.2. Placing a Buffer on a Doubly Linked List

For example, reconsider the fragment of code from Chapter 2 (Figure 12.2)
that places a data structure (pointer bpl) after an existing structure (pointer bp).
Suppose two processes execute the code simultaneously on different processors, such
that processor A wants to place structure bpA after bp and processor B wants to
place structure bpB after bp. No assumptions can be made about the relative
processor execution speed: the worst case is possible, where processor B could
execute the four C statements before processor A can execute another statement.

12.1 PROBLEM OF MULTIPROCESSOR SYSTEMS 393

For example, handling an interrupt can delay execution of a code sequence on
processor A. Corruption could occur as was illustrated in 'Chapter 2, even though
interrupts were blocked. h

The kernel must make sure that such corruption can never occur. If it were to
leave a window open in which a corrupt situation could arise, no matter how rare,
the kernel would be unsafe and its behavior unpredictable. There are three
methods for preventing such corruption (see [Holley 79]):

1. Execute all critical activity on one processor, relying on standard uniprocessor
methods for preventing corruption;

2. Serialize access to critical regions of code with locking primitives;

3. Redesign algorithms to avoid contention for data structures.

This chapter describes the first two methods to protect the kernel from corruption,
and an exercise explores the third.

12.2 SOLUTION WITH MASTER AND SLAVE PROCESSORS

Goble implemented a system on a pair of modified VAX 11/780 machines where
one processor, called the master, can execute in kernel mode and the other
processor, called the sigve, executes only in user mode (see [Goble 81]). Although
Goble’s implementation contained two machines, the technique extends to systems
with one master and several slaves. The master processor is responsible for
handling all system calls and interrupts. Slave processors execute processes in user
mode and inform the master processor when a process makes a system call.

The scheduler algorithm decides which processor should execute a process
(Figure 12.3). A new field in the process table designates the processor ID that a
process must run on; for simplicity, assume it indicates either master or slave.
When a process on a slave processor executes a system call, the slave kernel sets the
processor ID field in the process table, indicating that the process should run only
on the master processor, and does a context switch to schedule other processes
(Figure 12.4). The master kernel schedules the process of highest priority that
must run on the master processor and executes it. When it finishes the system call,
it sets the processor ID field of the process to slave, allowing the process to run on
slave processors again.

If processes must run on the master processor, it is preferable that the master
processor run them right away and not keep them waiting. This is similar to the
rationale for allowing process preemption on a uniprocessor system when returning
from a system call, so that more urgent processing gets done sooner. If the master
processor were executing a process in user mode when a slave processor requested
service for a system call, the master process would continue executing until the next
context switch according to this scheme. The master processor could respond more
quickly if the slave processor set a global flag that the master processor checked in
the clock interrupt handler; the master processor would do a context switch in at
most one clock tick. Alternatively, the slave processor could interrupt the master

394

MULTIPROCESSOR SYSTEMS

algorithm schedule process (modified)
input: none
output: none

{

while (no process picked to execute)

if (running on master processor)
for (every process on run queue)
pick highest priority process
that is loaded in memory;
else /* running on a slave processor */
for (every process on run queue that need not run on master)
pick highest priority process that is loaded in memory;
if (no process eligible to execute)
idle the machine;

/* interrupt takes machine out of idle state */

}

remove chosen process from run queue;
switch context to that of chosen process, resume its execution;

Figure 12.3. Scheduler Algorithm

algorithm syscall /* revised algorithm for invocation of system call */
input: system call number
output: result of system call

{

if (executing on slave processor)

set processor ID field in process table entry;
do context switch;

}

do regular algorithm for system call here;

reset processor ID field to “any” (slave);

if (other processes must run on master processor)
do context switch;

Figure 12.4. Algorithm for System Call Handler

12.2 SOLUTION WITH MASTER AND SLAVE PROCESSORS 395

processor and force it to do a context switch immediately, but this assumes special
hardware capability.

The clock interrupt handler on a slave processor makes sure that processes are
periodically rescheduled so that no one process monopolizes the processor. Aside
from that, the clock handler “wakes up” a slave processor from an idle state once a
second. The slave processor schedules the highest priority process that need not run
on the master processor.

The only chance for corruption of kernel data structures comes in the scheduler
algorithm, because it does not protect against having a process selected for
execution on two processors. For instance, if a configuration consists of a master
processor and two slaves, it is possible that the two slave processors find one process
in user mode ready for execution. If both processors were to schedule the process
simultaneously, they would read, write and corrupt its address space.

The system can avoid this problem in two ways. First, the master can specify
the slave processor on which the process should execute, permitting more than one
process to be assigned to a processor. Issues of load balancing then arise: One
processor may have lots of processes assigned to it, whereas others are idle. The
master kernel would have to distribute the process load between the processors.
Second, the kernel can allow only one processor to execute the scheduling loop at a
time, using mechanisms such as semaphores, described in the next section.

12.3 SOLUTION WITH SEMAPHORES

Another method for supporting UNIX systems on multiprocessor configurations is
to partition the kernel into critical regions such that at most one processor can
execute code in a critical region at a time. Such multiprocessor systems were
designed for use on the AT&T 3B20A computer and IBM 370, using semaphores
to partition the kernel into critical regions (see [Bach 84]). The description here
will follow those implementations. There are two issues: How to implement
semaphores and where to define critical regions.

As pointed out in Chapter 2, various algorithms in uniprocessor UNIX systems
use a sleep-lock to keep other processes out of a critical region in case the first
process later goes to sleep inside the critical region. The mechanism for setting the
lock is

while (lock is set) /* test operation */
sleep(condition until lock is free);
set lock:

and the mechanism for unlocking the lock is

free lock;
wake up all processes sleeping on condition lock set;

Sleep-locks delineate some critical regions, but they do not work on multiprocessor
systems, as illustrated in Figure 12.5. Suppose a lock is free and two processes on

396 MULTIPROCESSOR SYSTEMS

Process A/Processor A Process B/Processor B

Lock NOT Set
Check if lock set Check if lock set
todeeo O (o) ______
Set lock Set lock
v Use resource Use resource
Time

Danger of Corruption!

Figure 12.5. Race Conditions in Sleep-Locks on Multiprocessors

two processors simultaneously attempt to test and set it. They find that the lock is
free at time ¢, set it, enter the critical region, and may corrupt kernel data
structures. There is leeway in the requirement for simultaneity: the sleep-lock fails
if neither process executes the lock operation before the other process executes the
test operation. For example, if processor A handles an interrupt after finding that
the lock is free and, while handling the interrupt, processor B checks the lock and
sets it, processor A will return from the interrupt and set the lock. To prevent this
situation, the locking primitive must be atomic: The actions of testing the status of
the lock and setting the lock must be done as a single, indivisible operation, such
that only one process can manipulate the lock at a time.

12.3.1 Definition of Semaphores

A semaphore is an integer -valued object manipulated by the kernel that has the
following atomic operations defined for it:

e Initialization of the semaphore to a nonnegative value;

¢ A P operation that decrements the value of the semaphore. If the value of the
semaphore is less than 0 after decrementing its value, the process that did the P
goes to sleep;

® A V operation that increments the value of the semaphore. If the value of the
semaphore becomes greater than or equal to 0 as a result, one process that had
been sleeping as the result of a P operation wakes up;

12.3 SOLUTION WITH SEMAPHORES 397

e A conditional P operation, abbreviated CP, that decrements the value of the
semaphore and returns an indication of true, if its value is greater than 0. If
the value of the semaphore is less than or equal to 0, the value of the semaphore
is unchanged and the return value is false.

The semaphores defined here are, of course, independent from the user-level
semaphores described in Chapter 11.

12.3.2 Implementation of Semaphores

Dijkstra [Dijkstra 65] shows that it is possible to implement semaphores without
special machine instructions. Figure 12.6 presents C functions to implement
semaphores. The function Pprim locks the semaphore by checking the values of the
array val; each processor in the system controls one entry in the array. When a
processor locks a semaphore, it checks to see if other processors already locked the
semaphore (their entry in val would be 2), or if processors with a lower ID are
currently trying to lock it (their entry in val would be 1). If either condition is
true, the processor resets its entry in val to 1 and tries again. Pprim starts the
outer loop with the loop variable equal to the processor ID one greater than the one
that most recently used the resource, insuring that no one processor can monopolize
the resource (refer to [Dijkstra 65] or [Coffman 73] for a proof). The function
Vprim frees the semaphore and allows other processors to gain exclusive access to
the resource by clearing the entry of the executing processor in val and resetting
lastid. The following code sequence would protect a resource.

Pprim(semaphore);
use resource here;
Vprim(semaphore);

Most machines have a set of indivisible instructions that do the equivalent
locking operation more cheaply, because the loops in Pprim are slow and would
drain performance. For instance, the IBM 370 series supports an atomic compare
and swap instruction, and the AT&T 3B20 computer supports an atomic read and
clear instruction. When executing the read and clear instruction, for example, the
machine reads the value of a memory location, clears its value (sets it to 0), and
sets the condition code according to whether or not the original value was zero. If
another processor uses the read and clear instruction simultaneously on the same
memory location, one processor is guaranteed to read the original value and the
other process reads the value 0: The hardware insures atomicity. Thus, the
function Pprim can be implemented more simply with the read and clear
instruction (Figure 12.7). A process loops using the read and clear instruction,
until it reads a nonzero value. The semaphore lock component must be initialized
to 1.

This semaphore primitive cannot be used in the kernel as is, because a process
executing it keeps on looping until it succeeds: If the semaphore is being used to

398 MULTIPROCESSOR SYSTEMS

struct semaphore

{

int val[NUMPROCS]; /* lock———1 entry for each processor */
int lastid; /* ID of last processor to get semaphore */

};

int procid; /* processor ID, unique per processor */

int lastid; /* ID of last proc to get the semaphore */

INIT (semaphore)

struct semaphore semaphore;
{

int i;

for (i =0; i < NUMPROCS; i++)

semaphore.valli) = 0;

)
Pprim(semaphore)

struct semaphore semaphore;

int i, first;

loop:
first = lastid;
semaphore.vallprocid] = 1;
/* continued next page */

Figure 12.6. Implementation of Semaphore Locking in C

lock a data structure, a process should sleep if it finds the semaphore locked, so
that the kernel can switch context to another process and do useful work. Given
Pprim and Vprim, it is possible to construct a more sophisticated set of kernel
semaphore operations, P and V, that conform to the definitions in Section 12.3.1.
First, let us define a semaphore to be a structure that consists of a lock field to
control access to the semaphore, the value of the semaphore, and a queue of
processes sleeping on the semaphore. The lock field controls access to the
semaphore, allowing only one process to manipulate the other fields of the structure
during P and V operations. It is reset when the P or V operation completes. The
value field determines whether a process should have access to the critical region
protected by the semaphore. At the beginning of the P algorithm (Figure 12.8),
the kernel does a Pprim operation to ensure exclusive access to the semaphore and
then decrements the semaphore value. If the semaphore value is nonnegative, the
executing process has access to the critical region: It resets the semaphore lock
with the Vprim operation so that other processes can access the semaphore and
returns an indication of success. If, as a result of decrementing its value, the
semaphore value is negative, the kernel puts the process to sleep, following

12.3 SOLUTION WITH SEMAPHORES 399

forloop:
for (i = first; i < NUMPROCS; i++)
{
if (i == procid)
{
semaphore.valli] = 2;
for i =1; i < NUMPROCS; i++)
if (i != procid & & semaphore.valli] == 2)
goto loop;
lastid = procid;
return; /* success! now use resource */
}
else if (semaphore.vallil)
goto loop;
}
first = 1;
goto forloop;
}
Vprim (semaphore)
struct semaphore semaphore;
{

lastid = (procid+1) % NUMPROCS; /* reset to next processor */
semaphore.val[procid] = 0;

Figure 12.6. Implementation of Semaphore Locking (continued)

semantics similar to those of the regular sleep algorithm (Chapter 6): It checks for
signals according to the priority value, enqueues the executing process on a first-in-
first-out list of sleeping processes, and does a context switch. The ¥V function
(Figure 12.9) gains exclusive access to the semapl}orc via the Pprim primitive and
increments the semaphore value. If any processes were on the semaphore sleep
queue, the kernel removes the first one and changes its state to “ready to run.”

The P and V functions are similar to the sleep and wakeup functions: The
major difference in implementation is that a semaphore is a data structure, whereas
the address used for sleep and wakeup is just a convenient number. A process will
always sleep when doing a P operation on a semaphore if the initial value of the
semaphore is 0, so P can replace the sleep function. However, the V operation
wakes up only one process, whereas the uniprocessor wakeup function wakes up all
processes asleep on an event address.

Semantically, use of the wakeup function indicates that a given system condition
is no longer true, hence all processes that were asleep on the condition must wake
up. For example, when a buffer is no longer in use, it is incorrect for processes to
‘sleep on the event the buffer is busy, so the kernel awakens all processes that were

400 MULTIPROCESSOR SYSTEMS

struct semaphore {
int lock;
};

Init(semaphore)
struct semaphore semaphore;
{

}

semaphore.lock = 1;
Pprim(semaphore)

struct semaphore semaphore;
{

while (read_and_clear(semaphore.lock))

’

)

Vprim(semaphore)
struct semaphore semaphore;
{

)

semaphore.lock = 1;

Figure 12.7. Semaphore Operations Using Read and Clear Instruction

asleep on the event. As a second example, if multiple processes write data to a
terminal, the terminal driver may put them to sleep because it cannot handle the
high volume of data. Later, when the driver decides it can accept more data for
output, it wakes up all processes that were asleep, waiting to output data. Use of
the P and V operations is more applicable for locking operations where processes
gain access to a resource one by one and other processes are granted access in the
order they requested the resource. This is usually more efficient than the
uniprocessor sleep-lock, because if all processes wake up on occurrence of an event,
most may find the lock still set and return to sleep immediately. On the other
hand, it is more difficult to use P and V for cases where all processes should be
awakened at once.

Given a primitive that returns the value of a semaphore, would the following
operation be the equivalent of the wakeup function?

while (value(semaphore) < 0)
V (semaphore);

Assuming no interference from other processors, the kernel executes the loop until
the value of the semaphore is greater than or equal to 0, meaning that no processes
are asleep on the semaphore. However, it is possible for process A on processor A

